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Preface 

The field of Stochastic Partial Differential Equations (SPDE's), one of the 
most dynamically developing areas of mathematics, lies at the cross section 
of probability, partial differential equations, and mathematical physics. It is 
especially attractive because of its interdisciplinary character and enormous 
richness'of current and potential future applications. 

Due to its spectacular success, the topic of SPDE's has gained much 
attention in the last two .decades. However, as it often happens to research 
fields in their early stages of. development, the paradigm of SPDE's is still 
fairly "soft": the same name SPDE covers different topics for different people. 

In the world of probabilists (especially those working in the theory of 
stochastic processes), the field of SPDE's covers the analysis of partial dif- 
ferential equations driven by a random term which can be interpreted as a 
white noise in time, or a space-time white noise. The emphasis here is on 
stochastic analysis: existence and uniqueness problems, control of the fine 
structure of the solution when viewed as stochastic processes and/or random 
fields (regularity properties of the sample realizations, Markov properties, 

etc.). 
In the world of biologists, physicists, fluid mechanicians, and more so in 

the world of most applied mathematicians, the field of SPDE's covers the 
analysis of partial differential equations in the case when some of the coeffi- 
cients are random. The models are derived phenomenologically on physical 
grounds, and a statistical approach is taken to handle complex phenomena 
such as turbulence, chaos, microscopic behavior,.... Most of the efforts in this 
area are devoted to the development of renormalization theory in which the 
SPDE's take a simpler form, and can become linear and deterministic. 

This, of course, does not exhaust the plurality of interests in the field. 
As of now, SPDE's appear to be an exciting mosaic of highly interconnected 



topics that spins around stochastics and partial differential equations rather 
than a well-ordered, established field. 

It is hard to believe that any single book can or should treat the enor- 
mously complex field of SPDE's from a unified point of view. Consequently, 
this book is a collection of six important topics in SPDE's presented from 
a different view by distinguished scientists actively working on SPDE's and 
related areas. 

The book consists of three parts. The first part covers methods of solu- 
tions of SPDE's. The second part studies relations of SPDE's and interacting 
particle systems arising in physics and biological sciences. The third is dedi- 
cated to general problems of stochastic modeling, applications to continuum 
physics, fluid dynamics, and physical oceanography with an emphasis on the 
computational aspects of SPDE's. Each part consists of two chapters written 
by different authors. Every chapter is a comparatively self-contained review 
of new and existing results of a particular subfield of SPDE's or a related 
area. 

Of course, this book could not possibly cover all or even the most impor- 
tant developments and problems of SPDE's. However, we believe that it will 
provide the interested reader with an informative snapshot of this rapidly 
developing area. 



Part I 

General Theory of SPDE's 



Chapter 1 

Analytical approach to 
stochastic partial differential 
equations 

N.V. Krylov 

In this chapter we present a systematic exposition of the analytical ap- 
proach to SPDEs of the form 

rt     d d 

u(t) = u(0) +  / (Y^ aijuxixs + J2 &'«*• +cu + f)ds 

oo       »t     d 

+E ME '*«*••+ yku+sk) dwl (L1) 
where a, b, c, /, a, u, g are given predictable functions of (u>, i, x) € (ti, R+,R ) 
and wk are independent Wiener processes and the last integral is understood 
as Ito's stochastic integral. 

One of the important impetuses for the theory of SPDEs is the problem of 
nonlinear filtering of diffusion processes. The filtering problem (estimation 
of a "signal" by observing its mixture with a "noise") is one of classical 
problems in the statistics of random processes. It also belongs to a rare type 
of purely engineering problems that have a precise mathematical formulation 
and allows for a mathematically rigorous solution. 
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The first remarkable results in connection with filtering of stationary pro- 
cesses were obtained by Kolmogorov and Wiener. After the celebrated paper 
by Kaiman and Bucy was published in 1961, the 1960s and 1970s witnessed 
a rapid development of filtering theory for systems whose dynamics could be 
described by Ito's stochastic differential equations. First results for general 
diffusion processes v/ere summed up in the books by Liptser and Shiryayev 
and by Kallianpur. A systematic investigation of the existence and proper- 
ties of the filtering density for general diffusion processes started with works 
Krylov and Rozovskii (1977), (1978). An account of the results obtained 
before 1990 can be found in the book by Rozovskii (1990). 

These kind of equations arises not only in the filtering problem but also in 
other applications of probability theory, e.g., to genetics (Fleming-Viot equa- 
tions), quantum mechanics, magneto-dynamics and so on (see, for instance, 
the book by Rozovskii (1990)). There is an extensive literature devoted to 
investigations of the linear equation (1.1) as: well as its different nonlinear 
modifications. The general theory of these equations started with works by 
Pardoux (1975) and Krylov and Rozovskii (1977). Various aspects of the the- 
ory not reflected in the book by Rozovskii are studied by Da Prato (1983), 
Walsh (1986), Gyongy (1989), Dowson, Iscoe and Perkins (1989), Hauss- 
man and Pardoux (1989), Buckdahn and Pardoux (1990), Brzezniak (1991), 
Krylov and Gyongy (1992), Flandolli (1992), Mueller (1991). 

So far the Sobolev-Hilbert spaces W% were the spaces of choice to charac- 
terize the smoothness of the a posteriori density. Unfortunately, these spaces 
are not very convenient from the point of view of practical approximations 
of the solutions. The reason for this is that W?(Rd) C Cn-d/2{Rd) only if 
2n > d, and one can prove that the solutions belong to W£(Rd) only if 
the coefficients are n — 2 times continuously differentiable. Therefore, if we 
want to get the solutions m times continuously differentiable with respect to 
x € Rd, we have to suppose that the coefficients of the equation are more 
than m + d/2 — 2 times continuously differentiable even if the free terms 
are of class C%°(Rd). At the same time W£(Rd) C Cn-d/p(Rd) if pn > d, 
and by taking p sufficiently large one sees that the solutions have almost as 
many usual derivatives as generalized ones. Actually, exactly for this purpose 
the spaces Wp(Rd) with p > 2 have already been used in the SPDE theory 
(see, for instance, Rozovskii (1990), Krylov and Rozovskii (1977)), but the 
corresponding results obtained by integration by parts were far from being 
sharp. 



Another advantage of the Wp
n setting with p > 2 can be seen in the 

case of very popular equations with so-called cylindrical white noise (see, 
for instance, Mueller (1991), Nualart and Pardoux (1992), Walsh (1986) and 
references therein). These equations can be included in the general W™- 
theory as particular examples for any p > 2. However, in the case p = 2 the 
general theory gives only integrability of all powers of the solution. On the 
other hand, for p > 2, the general results imply continuity of the solution. 
By the way, it is essential to work with the whole scale of values of n: n (E 
(—00,00), and with the spaces of Bessel potentials Hp(Rd). In the case of 
equations with the cylindrical white noise we need n slightly less than (—3/2). 

Here we concentrate on H£-theory for all range of n,p and give a self 
contained exposition of the theory in the whole space. In particular, we 
obtain an existence theorem which extends corresponding known results (see 
Walsh (1986)) to equations with random and variable coefficients, which was 
just inconceivable under usual treatment of these equations. We also give a 
short proof of a generalization of an important result from Mueller (1991) 
concerning the nonexplosion of solutions of a nonlinear SPDE. 

In addition, we also present some elements of the theory for smooth do- 
mains. There are some unusual difficulties which require introducing weighted 
Sobolev spaces. 

Address: Department of Mathematics, 127 Vincent Hall, University of Min- 
nesota, Minneapolis, MN, 55455. 



Chapter 2 

Martingale Problems for 
Parabolic SPDE's and 
Absolute Continuity of their 
Solutions 

R. Mikulevicius and B.L. Rozovskii 

2.1 Introduction 
Loosely speaking, all exisiting methods of solving parabolic SPDE's can be 
split into two categories. Below we will refer to them as pathwise and statis- 
tical, respectively. 

The distinction between these two approaches stems from a fundamental 
difference in the interpretation of the notion of a solution. The pathwise 
approach interprets a solution as a random function of time (path), taking 
values in some functional space H, which satisfies the equation in question 
for any (or almost any) given realization of the random factors involved in 
this equation. 

On the contrary, the statistical solution is a probability law on the space of 
paths with value in S, so that all the paths from the support of this measure 
solve our equation. (In which sense a path satisfies the equation might vary 
in both approaches).   Of course the probability law of a pathwise solution 
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is a statistical solution for the same equation. So the statistical solution is 
an extension of the notion of a pathwise solution. That is why the former is 
sometimes referred to as weak and the latter as strong. 

The roots of most pathwise methods can be traced to deterministic the- 
ory of differential equations. In particular, this applies to theories of linear 
SPDE's and SPDE's of monotone type (see e.g. DaPrato, Zabchick [17], 
Krylov [this volume], Krylov, Rozovskii [36], Pardoux [54], Rozovskii [57]). 
On the contrary the statistical methods essentially have no peers in the deter- 
ministic theory of PDE's. This approach originated in the theory of ordinary 
SDE and has proven to be a most effective tool in studies of nonlinear equa- 
tions. Statistical approach to stochastic PDE was championed by Skorohod 
[58] (weak solutions) and Strook and Varadhan [60] (martingale problems): 
Viot [62] pioneered applications of statistical solutions to SPDE's, specifi- .- 
cally he.studied martingale problems for stochastic Navier-Stokes equation 
and Fleming-Viot super process. Later this approach to SPDE's was devel- 
oped by Grigelionis, Mikulevicius [26], Kozlov [33], Metivier [49], Mikulevi- 
cius, Rozovskii [50] and many others. In particular, this approach has proven 
to be very helpful in studying super-Brownian motion and.related branching 
processes (see Dawson, Perkins [this volume] and references therein). 

A review of the pathwise methods of solving linear and quasi-linear parabolic 
SPDE's is given in Chapter 2. The present Chapter deals exclusively with 
statistical solutions of nonlinear parabolic SPDE's. More specifically we re- 
strict ourselves to martingale problems for parabolic SPDE's. This setting 
introduced by Stroock and Varadhan [60] is probably the most flexible and 
general form of the statistical approach. 

2.2 Stochastic Analysis in Topological Vector 
Spaces 

We.begin with some elements of infinite-dimensional stochastic analysis to 
set up a general framework for the future. 

Stochastic integration in infinite dimensional spaces is a mature "area. 
Several important classes of stochastic integrals were introduced and studied 
in depth by Kunita [38], Metivier and Pistone [47], Meyer [46], Metivier 
and Pellaumail [48], Gyöngi and Krylov [28], Grigelionis and Mikulevicius 
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[26], Walsh [63], Korezlioglu [32], Kunita [37], etc. Not surprisingly, the 
approaches to infinite dimensional stochastic integration proposed in these 
works have some similarities but also some distinct features. The latter are 
mainly related to the specifics of the spaces and processes involved. For 
example, the integral with respect to a stochastic flow (see Kunita [37], and 
also Gihman, Skorohod [25]) and the integrals with respect to orthogonal 
martingale measures (see Gyöngy, Krylov [28], Walsh [63]) seem to have 
very little in common. In fact, the relation between these two integrals 
as well as others mentioned above is stronger then it might appear. More 
specifically, it will be shown in this section that all these integrals and some 
other are particular cases of one stochastic integral with respect to a local 
square integrable cylindrical martingale in a topological vector space. 

2.3 Infinite Dimensional Martingale Problem. 
Existence of Solutions 

The powerful idea to prove existence of a weak solution to an ordinary Ito 
equation (or the corresponding martingale problem) using weak compactness 
of measures generated by a sequence of approximate solution^ was champi- 
oned, by Skorohod[58] and Stroock and Varadhan[60]. It turned out that 
this technique can be extended to infinite-dimensional stochastic equations 
including important classes of non-linear SPDE's (see e.g. Viot[62], Grige- 
lionis and Mikulevicius[26] etc.). 

In this section we study the martingale problem for an abstract nonlinear 
stochastic PDE in the Gelfand triple V C H C V where H is a separable 
Hilbert space and V and its dual V are reflexive Banach spaces. It is as- 
sumed that the SPDE is coercive (in the sense of Krylov, Rozovskii (1981) 
and its operator coefficients are weakly continuous. We will prove the ex- 
istence theorem in three steps. Firstly, by using coercivity assumption we 
will establish a priori estimates. Secondly, these estimates will be used to 
establish tightness of distributions generated by approximate solutions of our 
equation. Finally we will use Prokhorov theorem to establish weak "conver- 
gence of the approximate weak solutions and then will pass to the limit. 

It should be noted that the study of weak solutions of SPDE's requires 
consideration of spaces and trajectories endowed with topologies which are 
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not complete separable metrizable topologies. The topology of interest in 
each particular case is commanded by the functionals of the paths which are 
to be studied. The topology has to be fine enough to make given functionals 
continuous, but not too fine if one wants a given sequence of measures to be 
weakly compact. 

In the end of this chapter we will consider two SPDE's of particular 
interests: the equation for super Brownian motion on Rd and the equation 
of stochastic quantization in P{<p)i theory (see e.g. Jona-Lasinio, Mitter[30] 
(1985)). 

2.4 Absolute Continuity and Uniqueness of 
Weak Solutions 

The methodology developed to study uniqueness of weak solutions of finite- 
dimensional stochastic ODE's appears to be difficult to apply to SPDE's. It 
rests on analytical results for the Kolmogorov equtaion (or its elliptic coun- 
terpart) related to the martingale problem in question. To apply the same 
idea to SPDE's, one would need similar results for (variational) parabolic 
or elliptical equations on infinite dimensional domains. Unfortunately, such 
results in many interesting cases are not known at the moment and seem to 
be hard to obtain. 

To overcome this difficulty we take a different approach. It applies to cases 
when a weak solution is absolutely continuous with respect to a measure 
which itself is a weak solution to a simpler reference equation. Roughly 
speaking, we will prove that if a weak solution y. to some SPDE is locally 
unique, then all other measures absolutely continuous with respect to p, are 
also unique weak solutions to SPDE's which differ from the original one by 
additive perturbations of its "drift operator." 

By no means this approach is new; it has been routinely used in finite- 
dimensional stochastic ODE's. To apply this method to SPDE's, we will first 
study the problem of absolute continuity of solutions of infinite-dimensional 
martingale problem. Specifically, we will prove a necessary and sufficient 
criterion for the above property of martingale problems. 

This result generalizes the well known criterion for absolute continuity 
of measures generated by finite-dimensional diffusion processes (see Liptser- 
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Shiryaev[43]) and its infinite-dimensional version (Kozlov[33]). 
In the second part of this section we will apply the aforementioned results 

to various SPDE's. 
Specifically, we will prove the uniqueness of the equation of stochastic 

quantization 
dxt = [|AXt- : x3 :] dt + dWt 
XQ ~ ci exp {—c : x3 :} fi(dx) , 

where Wt is a space time White noise on R2 and fi(dx) is a Gaussian measure 
on L2(R

2) with zero mean and covariance A-1. We will also prove that the 
probability distribution generated by this equation is singular to the one 
generated by the Ornstein-Uhlenbeck equation 

dXt = \AXtdt + dWt 

X0 ~ C\ exp {—c : x3 :} p(dX) . 

In the conclusion of this section we will give an explicit characterization of all 
measures absolutely continuous with respect to the probability distribution 
of the Super-Brownian motion. 

Address: Center for Applied Mathematical Sciences, University of Southern 
California, Los Angeles, CA 90089-1113. 
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Part II 

SPDE's and Interacting 
Particle Systems 

14 



Chapter 3 

Limits of Renormalized 
Branching Particle Systems 

D.A. Dawson and E.A. Perkins 

3.1 Measure-valued processes 

This chapter provides a brief self-contained introduction to branching par- 
ticle systems and super-Brownian motion. We begin with a description of 
a general family of particle systems in the setting of measure-valued mar- 
tingale problems. Then the special case of branching Brownian motions is 
given and then super-Brownian motion is obtained as a renormalized limit of 
such processes. In Ml super-Brownian motion has a density process which 
satisfies a stochastic partial differential equation but in higher dimensions 
the processes have singular measure states and for this reason the spde inter- 
pretation must be replaced by the martingale problem. Several basic tools 
will be introduced including weak convergence, measure-valued martingale 
problems and the Poisson cluster representation. Finally a number of exten- 
sions, examples and applications of measure-valued branching systems are 
presented. A tentative list of section headings is: --.... 

• A General Class of Particle Systems 

• Super-Brownian motion as the limit of branching Brownian Motion 
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• The Poisson Cluster Representation 

• Relations with SPDE 

• Super-random walk on Z 

• The spde in JR 

• Weak convergence approach in M 

• Extension to non-square integrable branching and infinite measures 

• Branching at a single point catalyst 

• Lattice trees and integrated super-excursion 

• The Fleming-Viot process as conditioned SBM 

3.2 History, Genealogy 

Branching particles systems have a rich family structure which is not ex- 
plicit in the characterization of super-Brownian motion given in Chapter 1 
but which is crucial for a deeper study of this process. In this chapter we 
introduce the genealogy first at the particle level and then derive historical 
Brownian motion which is an enriched version of super-Brownian motion. In 
this context one can obtain an analogue of Levy's classical modulus of conti- 
nuity of Brownian motion which serves as an important tool in studying the 
fine structure of super-Brownian motion. The sections will include: 

• Historical Brownian motion 

• Historical Modulus of continuity 

16 



3.3 Small Scale Behavior 

In general the subject of measure-valued processes is still in an early stage 
of development. However the study of the local structure of super-Brownian 
motion is now quite highly developed. In this section we give a survey of 
results on the small scale properties of super-Brownian motion in Si and 
include some detailed proofs to illustrate the methodologies which have been 
developed in this area. This includes results on the closed support of SBM, 
occupation measures and local times, polar sets, collisions of closed supports 
of SBM and closed supports with Brownian particles. A tentative list of 
section headings include: 

• Structure of the closed support of SBM 

• Occupation measures and local times 

• Range and multiple points of SBM 

• Hitting Probabilities 

• R and G polar sets 

• Collisions of closed supports 

3.4 Some General Formulations of Measure- 
valued Branching Processes 

In this chapter we briefly review (without proofs) Dynkin's program to char- 
acterize the general class of measure-valued branching processes in terms of 
natural characteristics. We also consider the characterization of these pro- 
cesses in terms of a family of martingale problems. 

• Dynkin's formulation of a general class of MVB processes 

• The martingale problem formulation 

17 
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3.5 Large Scale Behavior 

In this section we give an introduction to the large scale properties of branch- 
ing Brownian motions and super-Brownain motion in M . This involves 
a description of the competition between the "clumping" produced by the 
branching mechanism and the spatial homogenization produced by the mi- 
gration mechanism. Two basic tools are used in order to gain an under- 
standing of these problems - the first is the historical process which allow 
the description of the large space-time scale behavior of surviving families 
(clans) which in turn lead to a detailed description of the equilibrium states 
in high dimensions and clumping structure in critical and subcritical dimen^ 
sions. We also briefly describe the dyanamics of the infinite clans which arise 
in high dimensions. Finally we briefly describe some recent first steps in 
a program to establish that the large space-time scale behaviors exhibited 
by critical branching systems is shared by a larger "universality class" of 
spatially homogeneous measure-valued systems. 

• The persistence-extinction dichotomy 

• Clumping in low dimensions 

• Ergodic behavior 

• The equilibrium clan decomposition 

• Clan dynamics 

• Universality of the extinction-persistence dichotomy 

• Thermodynamic limit approach to super-random walk - the hierarchical 
mean field limit (if space permits) 

3.6 Interactive Branching Systems 

This chapter begins with an informal discussion of some potential applica- 
tions of measure-valued processes and the interaction mechanisms which arise 
naturally in these applications. The rigorous study of such systems is a sub- 
ject of a lot of current research but many problems remain open. We describe 
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the formal structure of the martingale problems which arise and survey some 
of the classes of interactive measure-valued processes for which results have 
been obtained. One of these is the continuous analogue of a branching parti- 
cle system in which the motions of the individual particles are influenced by 
the other particles which are present. Another is the class of processes which 
arises in population genetics as an idealization of branching systems in an 
environment with locally finite carrying capacities - these are the stepping 
stone systems of Fleming-Viot processes. 

• Applications of measure-valued processes 

— reaction diffusion systems, diffusion of innovations, population ge- 
netics, evolutionary theory, ecology, distributed and hierarchically 
structured information systems 

— Describe the models, interactions involved and problems posed. 

• An overview of interactions for particle systems and measure-valued 
processes - structure of formal generators. 

• Examples of branching with interaction: 

— State dependent mean offspring size 

— Zero range interactive killing 

— Particle medium and particle-medium-particle interactive motion 

— Interactive branching in JR 

— Catalytic branching 

— Mutually catalytic branching 

— Multilevel branching 

• Fleming-Viot processes and stepping stone models 

— the infinitely many types stepping stone model 

— selection and mutation 

— interactive sampling 

19 



Chapter 4 

From Microscopic Dynamics 
To PDE's: Hydrodynamics 
And Fluctuations, 

G. Giacomin and J.L. Lebowitz 

4.1 Motivations And Overview 

The hierarchical structure of nature often allows us to study the different 
levels of its hierarchy independently. A remarkable example of this fact is the. 
success of hydrodynamic theories, which were and are often introduced with 
little or even no knowledge of the underlying molecular structure. At a more 
fundamental level, if we are focusing on atoms or molecules, considering the 
nuclei simply as point charges will often do little or no harm. Obviously the 
different levels are not completely independent and no sharp demarkation 
line can be drawn. In particular the behavior of a rougher or larger scale 
level should, at least in principle, be entirely derivable from a more detailed 
or smaller scale one. The apparent independence between different levels 
is a very deep fact: the large scale behavior often obeys macroscopic laws 
which have a very mild dependence on the details of the underlying-finer 
level. These laws have generally the form of PDE's 

dtM(r,t) = F(M)(r,t) (4.1) 
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in which M is a set of macroscopic variables (density, magnetization,...) de- 
pending on space and time. F is a functional which may depend on the 
value of M and its derivatives at (r, t) (local dependence), as well as on their 
values at different points in space and time (nonlocal dependence). The heat 
equation and the Euler and Navier-Stokes equations are examples of (1). 

Several important questions connected with the interplay of different lev- 
els do arise. This is particularly relevant in situations in which a purely hy- 
drodynamic description fails (e.g. appeareance of singularities in the macro- 
scopic equations, nonuniqueness,...) or in understanding the small deviations 
from the hydrodynamic behavior, which, for example, may become crucial 
in presence of instabilities or in cases in which the system is observed over a 
very long period of time. A two-level version of (1) is 

dtM
£(r,i) = F£(M£)(r,0 (4.2) 

in which F€ is dependent on a small parameter e, representing the small 
contribution of the finer scale, and in the limit as t vanishes F£ approaches 
F. An often encountered choice of Fc is F£ = F + eW(r,t), in which W(r, t) 
is a stochastic term. A common problem is then the fact that W(r, i), being 
a contribution from a finer scale, may vary on spatial and temporal scales 
which are much shorter than the macroscopic scale. In other words W(r, t) 
may have very little regularity properties which can make (2) ill-posed. 

We will focus on some mathematical models in which the transition from 
microscopic to macroscopic can be investigated in great detail. In particular, 
macroscopic laws of the type (1) can be rigorously established in this frame- 
work. The correction to the approximate limit behavior (1) can be often 
pinned down and one can give a precise meaning to equation (2). We will 
mainly confine ourselves to phase segregation models, which are particularly 
good examples, since various length scales naturally come up, as it will be 
explained below. 

4.2 Macroscopic Phenomena and their Math- 
ematical Description. 

We will concentrate on phenomena which can be described in terms of den- 
sity fields p = (pa{r,t))a=i,...,n (nm is the number of components of the sys- 
tem) in which r € Rd (or a subset of it) and t € R+.  The dynamics may 
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drive the system to a homogeneous equilibrium (diffusive behavior) or it may 
lead to aggregation of the different components (phase segregation and pat- 
tern formation). There are essentially two mechanisms: one is the diffusion 
(which drives toward a homogeneous state) and the other one is the reaction 
(which introduces an interaction between the different components). We will 
introduce and briefly discuss nondegenerate diffusion equations, Reaction- 
Diffusion systems and more particular phase segregation models such as the 
Cahn-Allen (C-A) and Cahn-Hilliard (C-H) models. In particular the stress 
will be on two facts: 

1. Phase separation models like Cahn-Allen and Cahn-Hilliard are already 
large scale dynamics, but it is on an even larger scale that the phase 
separation phenomena arise sharply and can be properly described; 

2. Some very important phase separation phenomena are intrinsically non 
deterministic and it becomes vital to consider more than one level at 
the same time. Very common examples of these are the quenching 
phenomena, that is the onset of spatial patterns from a homogeneous 
state due to the sudden change of the status of a system from diffusive 
(high temperature) to phase segregating (low temperature). 

4.3 Microscopic Structure and Its Mathemat- 
ical Description. 

The importance of simple models is well established for equilibrium behavior, 
that is for cases in which the system has reached its stationary state (this 
state is described in terms of a measure, the Gibbs measure, on the config- 
uration space). The Ising model, the most simple of the non trivial Gibbs 
systems, has been successfully employed to model diverse phenomena and 
played a fundamental role in understanding the nature of phase transition 
phenomena, both from the applied and the mathematical viewpoint. 

Up to now no model has acquired the status of prototype model for 
nonequilibrium phenomena. This is due in part to the much greater complex- 
ity of nonequilibrium: even the solutions of the macroscopic equations are far 
from being understood in the interesting cases. Nevertheless some computer 
simulations have shown that very simple models capture the essence of large 
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scale phenomena. Conforted by this empirical observation, we will mainly 
direct our attention to lattice systems with stochastic dynamics, the so called 
Interacting Particle Systems (IPS) [42, 59]. They are dynamical versions of 
the Gibbsian equilibrium models, in the sense that their invariant measure 
(in finite volume) is a Gibbs measure. The dynamics is Markovian and the 
configuration is updated at random (Poissonian) times according some local 
rules. 

The IPS class is divided into two main classes: the Glauber (or spin- 
flip) dynamics, which does not conserve the sum of the occupation variables, 
and the Kawasaki (or exchange) dynamics, which has a conservation law. 
A third case is given by a superposition of Glauber and Kawasaki and it is 
particularly suitable to model Reaction-Diffusion systems. 

4.4 From Microscopic to Macroscopic. 

We will review some of the recent results on the derivation of hydrodynamic 
equations and we will focus mainly on two aspects: 

1. the difference between high temperature (diffusive) behavior and low 
temperature (phase segregation) behavior, enphasizing the role of phase 
transitions; 

2. the corrections to these hydrodynamic limits, which may be stochastic 
or deterministic, according to the cases. The corrections can be either 
small fluctuations around the limit or deviation from the limit behavior 
on long times. 

Standard fluctuations results are (infinite dimensional) Central Limit 
Theorems: the limit is a Gaussian process, that is the solution of a linear 
SPDE. Nonlinear fluctuations can be viewed as a breakdown of the Central 
Limit Theorem and they appear only in particular (critical) instances: these 
are, of course, much harder to investigate. 

23 



4.5 Long Range Potentials: hydrodynamics, 
fluctuations and applications. 

The program outlined in Section 3 (above) has been successfully carried out 
mostly for high temperature situations. At low temperatures the phenomena 
become much more complex and to gain a better understanding we will 
consider local mean field models, i.e. models in which the range of interaction 
is sent to infinity in a suitable way. More precisely, the 2-body interaction 
is given by ^dJ{j{x — t/)), in which x and y are two lattice sites, J is a 
smooth compactly supported function and 7 is a positive real number. The 
parameter 7 is sent to 0 as we consider the system in larger and larger boxes 
(Thermodynamical limit). The parameter 7 introduces an extra level in the 
hierarchy of the system and allows us to analyze several phenomena in a 
rigorous fashion. 

We will review some equilibrium results, starting with the original works 
[31, 39], including some results about metastability [55], and more recent 
ones. 

Much work has been already done in the Glauber case (see [21] and ref- 
erences therein), where hydrodynamics, fluctuations, pattern formation and 
evolution have been investigated in detail. In this case even a nonlinear 
fluctuation regime has been identified. 

We will consider in detail the dynamics in the Kawasaki case. Topics will 
include: 

1. The hydrodynamic limit, given by a nonlocal evolution law (this reflects 
the nonlocality of the underlying model); 

2. The connection of this macroscopic limit with the standard macroscopic 
model for the conserved case (C-H equation); 

3. A Central Limit Theorem (fluctuations) for this model (original work); 

4. Discussion of the relevance of the fluctuations for the problem of pattern 
formation; 

5. Dynamical metastability; 
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6. Is there a nonlinear fluctuation regime? We will present an heuristic 
argument aimed at showing that a Stochastic Cahn-Hilliard equation 
is the scaling limit of a suitable fluctuation field at the critical point 
for the particle model under consideration. 
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Part III 

Stochastic Modeling and 
Numerical Methods 
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Chapter 5 

Stochastic Partial Differential 
Equations:  Selected 
Applications in Continuum 
Physics 

James Glimm and David Sharp 

The central content and purpose of this chapter is to explain the scientific 
necessity for stochastic models, and certain key mathematical and theoret- 
ical issues which need to be addressed in this area in order to achieve the 
scientific goals proposed here. These two ideas occupy the first two sections 
of this paper. In the next two sections of this chapter, we illustrate these 
ideas by examining them from the point of view of fluid mixing. Here the dis- 
cussion becomes more specific, and is based on properties of solutions of the 
Euler and Navier-Stokes equations, Darcy's law, the Buckley-Leverett equa- 
tions and related equations. Because the scientific issues which we examine 
concern deep interactions between the nonlinear and stochastic aspects of 
the behavior of solutions of partial differential equations, neither of which 
is presently in a definitive or final stage, we appeal to a variety of methods 
for scientific understanding: theoretical analysis, numerical simulations, and 
analysis of experimental and field data. 
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Stochastic modeling occupies a central place in the derivation of the equa- 
tions of continuum physics. This fact is obscured by another fact: the de- 
sired outcome of this modeling is often a deterministic partial differential 
equation. Thus the stochastic model may be important either as an inter- 
mediate step towards a deterministic theory, or as a final theory in its own 
right. As we move toward more realistic acceptance of probability as a final 
outcome for technology, such as- in probabilistic risk assessment, probabilis- 
tic weather forecasts, probabilistic simulation studies to support petroleum 
reservoir management decisions, and probabilistic financial decision making, 
the role of the stochastic model as a final outcome will increase. As we 
demand increased accuracy and reliability from our deterministic models, 
the need to examine their stochastic components and derivations will also 
increase. For both reasons, we see a need to emphasize the importance of 
stochastic models of physical systems. The scientific issues raised in this 
article provide a selection of the type of questions which, in the authors' 
judgement, deserve deeper examination. 

We emphasize dynamical instability and sensitive dependence on initial 
conditions, in a microscopic dynamics which can be deterministic in principle, 
as the origin of stochasticity in models of physics. Related is the absence of 
sufficient deterministic data, which probability models supply statistically. 
But the deterministic laws of physics cannot be neglected, so that the model 
will be stochastic, and not purely statistical. Moreover, partial data cannot 
be ignored, so that the stochastic probability measures will be conditioned 
by partial knowledge. 

In section two, we will present some of the methods of a mathematical or 
analytic nature which have been useful in the study of stochastic modeling 
in application to continuum physics. We do not claim that the mathematical 
basis for these methods is well developed. To the contrary, the methods pre- 
sented here are, for the most part, far less well developed mathematically than 
such methods as Ito integrals, martingales, or Wiener measure. In general, 
the lower level of development of the mathematical foundations is due to the 
greater difficulty presented by random fields as opposed to random processes. 
From a formal point of view, these two are related as partial differential equa- 
tions are related to ordinary differential equations; alternately, we can say 
that the stochastic aspect of the problem converts a (deterministic) partial 
differential equation into such an equation in an infinite dimensional space. 
Thus the passage from deterministic to stochastic equations is comparable in . 
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difficulty to the passage from ordinary to partial differential equations. The 
mathematical tools we discuss include random fields and ensemble averages, 
moment expansions and effective equations, renormalization group methods, 
and direct numerical simulations. 

Section three is a survey of some very striking new results in the theory 
of fluid mixing layers, for compressible fluid dynamics. A body of work is 
presented, including, but not limited to, that of the authors and co-workers. 
Some of the principle results include scaling laws to describe mixing behav- 
ior, the first correct numerical simulations (as evidenced by agreement with 
experiment) for some typical fluid mixing problems, novel theoretical under- 
standing, improved asymptotic expansions, newly derived equations, and the 
explicit construction of a renormalization group fixed point to explain scaling 
behavior. 

Consider two fluids separated by an interface which is unstable relative 
to the flow pattern. As time progresses, the interface will become highly 
convoluted, and portions of each fluid will become entrained in the other, 
giving rise to a two-fluid mixing layer. The flow in the mixing layer has 
sensitive dependence on data, and thus requires stochastic modeling, even 
though the microscopic equations are deterministic. Shear layers (for which 
the tangential component of the velocity is discontinuous) are unstable ac- 
cording to the Kelvin-Helmholtz instability, leading to vortex formation and 
rollup of the interface. Jets are subject to breakup and atomization in a vari- 
ety of regimes, governed by the jet velocity relative to the ambient medium, 
among other factors. Acceleration driven interfaces may also be unstable, if 
the fluids have different densities, so that the forces of acceleration on the 
two fluids are not equal. We consider here two cases of acceleration driven 
instabilities, the Rayleigh-Taylor (RT) instability associated with a steady 
acceleration, such as gravity, and the Richtmyer-Meshkov (RM) instability 
caused by impulsive acceleration, such as by a shock wave. 

The quantities of interest are the size of the mixing region, as a function of 
time, and the statistical composition of the mixture, to give, for example the 
volume or mass average of each fluid, velocities, and mixing length scales. We 
use two theoretical methods to extract this information: a statistical analysis 
of elementary modes and closure of averaged equations with a statistical 
validation of the closure hypothesis. We also use direct numerical simulation 
to gather data to test these theories, and we analyze laboratory data for the 
same reason. 
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Section four has a similar goal, for the problem of mixing zones associated 
with flow in porous media. The results, while promising, are not as complete 
as those presented in section three. We consider both linear and nonlinear 
flow equations. Even the linear flow equations pose difficult problems, in that 
the random fields enter as equation coefficients. Thus the solution depends 
nonlinearly on the stochastic data. Standard Gaussian methods do not apply, 
and even if the data are Gaussian, the solution is non Gaussian. 

Supported by the Applied Mathematics Subprogram of the U.S. Department 
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Chapter 6 

Transport Simulations with 
2-D Incompressible OU 
Velocity Fields 

Rene A. Carmona 

Our motivation comes from the analysis of the mathematical models of 
physical oceanography. If we consider for example the case of the temperature 
or the salinity of the ocean, these'concentrations appear as solutions of linear 
parabolic equations driven by a the velocity field. We do not attempt to solve 
the nonlinear equation giving the velocity. Instead we use the known chaotic 
behavior of the solutions of the Navier-Stokes equation and real data from 
observations of drifters at the surface of the ocean to justify the choice of 
statistics for random models for the flows. 

From the numerical point of view, the concentration SPDE's can be solved 
numerically by including a sample realization of the random coefficients (ve- 
locity and/or forcing term in the case of interest) and using standard deter- 
ministic methods such as finite elements, multigrid, • • • and the like. Such 
an approach is very involved and can be cumbersome. See [24] and [64] for 
recent attempts in the one-dimensional case with white noise models. Also, it 
lacks the insight provided by a fine analysis of the properties of the random- 
ness in the system given by the Lagrangian analysis of the flow. This is the 
point of view taken in this paper. Since our goal is to simulate numerically 
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transport properties of random velocity fields, this Lagrangian approach is 
more natural than the Eulerian approach tied to the SPDE. 

We first present real data from drifter motions at the surface of the ocean 
and we discuss briefly some of the statistical issues related to the spectral 
analysis of these data. Next, we present the theoretical framework of the the- 
ory of random velocity fields with Gaussian statistics, we formulate precisely 
the mathematical assumptions of the physical models most widely accepted 
(incompressibility, Kolmogorov spectrum, ...) and we address the simula- 
tions issues. Then, we consider the stationary models for which the random 
velocity field is independent of time. We review the recent results of Majda 
et al reported in [44], [45] and [23]. In the following, section we review the 
massively parallel simulations reported in [9], the conjectures formulated and 
illustrated in the paper and the theoretical results proved subsequently. In 
particular, we discuss the proof of the positivity of the upper Lyapunov ex- 
ponent of the Jacobian flow given in [10] and the proof of the homogenization 
of the Lagrangian trajectories given in [12]. Finally, we discuss our work in 
progress [13] on the numerical estimates of the time evolution of the fractal 
dimension (Minkowski dimension to be specific) of the boundary of blobs 
of passive tracers transported by the flow and on the attempts to make the 
tracers feel the spectral singularity in the spectrum. The last section is de- 
voted to the discussion of an alternative model of random velocity field (see 
[14] and [15]: The time stucture is still of the Ornstein-Uhlenbeck type while 
the spatial structure depends upon a random vorticity constructed from a 
spatial Poisson point process. 
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